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MULTICRITERIA EVALUATION OF LOT SIZING TECHNIQUES
AS A FUNCTION OF DEMAND PATTERN, TIME BETWEEN
ORDERS, AND DEMAND VARIABILITY

By Bryan S. Cline, Bobbie L. Foote, and Robert E. Schlegel

INTRODUCTION

The motivation for this research was the observation of procurement systems at military logistics
agencies. The inventory ordering systems at these facilities are automated and long years of experience
with these systems are available. The data resuit in patterns of forecasting error which sometimes favor
one logistics approach over another. Level demand sets in which the mean is constant cause no problems
for (R, Q) models with exponential smoothing as the forecasting approach. However, if the demand
pattern exhibits trends or has many level changes, forecasting is difficult and the fluctuations in R and
that arise are very expensive. In the latter casc, buying 9 or 12 months demand plus a buffer stock based
on a forecast at a given time of the year may be much more effective in terms of both service level and
inventory cost. Thus, a change in logistics approach is dictated by the demand pattern forecasting
difficuity (Foote, Kebriaei and Kuman, 1988).

The criteria uscd in inventory procurcment is also important in reducing the harmful effects of
demand variance. For example, if shortages are recognized explicitely by modeling shortage costs,
changes in demand variance have a big impact on order quantity. If shortage is modeled by service level
constraints, changes in variance have a big impact on triggering an order. Different lot sizing technigues
will give different order quantities when the same forecast is used. Liberal lot sizing techniques that
"over order” will protect against shortages while conservative techniques will reduce or eliminate holding
costs.

It is also known that lot sizing tends to perform worse in practice than in simulated tests. The
reason for this is that actual demand pattcrns change over time from constant at a particular level, to
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trending, *o corsiant at a new level. A change to trending in the data triggers a false estimate of the
variance when techniques such as exponential smoothing are used. Based on observations of actual
demand pattern changes, a study was conducted to investigate the interaction of (1) lot sizing approach,
(2) ratio o1 holding cost to sctup cost (defining time between orders or “TBO"), (3) an iplicd shortage
cost model criterion, and (4) the demand pattern based on actual demands obtained from 4 lurge national
distribution company and a vendor for fast food chains. The sclection of the forecasting techniques, ot
sizing approaches, and cost factors was bascd on an extensive survey by Cline (1989).

FORECASTING TECHNIQUE

As discussed above, the accuracy of various forecasting technigues in terms of estimating
demand variance, recognizing trending, and consistently estimating the mean is important in reducing
inventory costs. Barron and Targewt (1985), Flores and Whybark (1986), and Amar and Gupta (1706 all
point out that forecasting methods perform differently ¢a simulated data compared with empirical data.
Based on the results of a forecasting competition, Makridakis et al. (1982) established the following
principles for selecting a forccasting technique: (1) knowledge of the underlying demand pattern helps
identify the best technique, (2) simple modcls work well, and (3) the average of the forecasts from simple
models is superior to the {orecast from a single model.

From the literature, exponential smoothing is more powerful compared with a large number of
alternative approaches and 1s widely used as a baseline technique (Silver and Peterson, 1985). If trending
in the data occurs, Holt's exponential smoothing model may be used to prevent the forecasting technigue
from becoming disadvantageous (Ibid.). Based on industrial short course projects conducted from 1987
to 1989, we used the idea of tracking the mean absolute deviation (MAD) and bias of a sct of
exponentially smoothed forecasts and sclecting the hest forecast for the next planning horizon. Silver and
Peterson (1985) arguc, however, that changing the smoothing constants (what they refer to as "adaptive”
smoothing), while having considerable intuitive appeal, is "not necessarily better than regular, non-
adaptive smoothing." (¢.g., Ekern, 1981; Flowers, 1980; Gardner and Dannenbring, 1980). Specifically,
Silver and Peterson feel the resulting forccasts would be excessively "nervous”. However, it i1s our
contention that if a forccast model is set, this effect does not occur. We also believe the lot sizing
problem studied here only requires the use of an extended forccast approximately once cvery "TBO”
pesiod.

Since we used automated forecasting, the best model for the current data could not be casily
determined. Thus, only the average of cxponential models with varying paramecters or "focus
forecasting” which selects a parameter set for Holt's model based on MAD and bias could be uscd.

During program tests on samples of empirical data, the focus foreccasting approach performed
better than averaging techniques in terms of less deviation and bias although the difference was not
statistically significant. Comparisons of the MAD for the focus procedure with the MADs for each
individual, static procedure were quite favorable. Focus forecasting was selected for this study since it
was intuitively more appecaling and its history in terms of student forecasling competitions reflected great
success. Rather than use a single model with changing parameters based on error, we used several
models with different fixed parameter sets. When a new, extended forecast was necded, the model which
had the best forecast history up to that point was chosen.

LOT SIZING TECHNIQUES

The following lot sizing techniques were compared:  Wagner-Whitin (W-W), Eiscnhut (Part
Period Balancing or PPB), Silver-Mcal, EOQ, and Tsado. The W-W approach (Silver and Peterson,
1985) has the advantage of claiming optimality over the time horizon for deterministic demand but
requires zero demand after the last period (after the time horizon). Actual demand does not satisfy cither
assumption; however, Wemmerlov and Whybark (1984) indicate the W-W approach is onc of the best
procedures when simulated forecast crrors are introduced.

Eisenhut part period balancing and EOQ do well in many cases when stochastic demand is
introduced (Callarman and Hamrin, 1979). Silver-Meal (S-M) has performed well in some studies with
forecast errors (De Bodt and Van Wassenhove, 1981) and poorly in others (Callarman and Hamrin,
1979). Using actual demand data with simulated crror, the EOQ, S-M, PPB, and lcast cost lot sizing
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methods adiusted to integral periods of demand were indistinguishable (De Bodt and Van Wassenhove,
1983).

Tsado (198354, b) developed a heuristic specifically to deal with stochastic demand and tested the
method on historical data. Tsado used the entire demand history to produce the forecast and then
computed lot sizes based on several approaches. His method appeared o work well compared with the
W-W, EOQ, PPB, and De Bodt's modified Silver-Meal. Unfortunately, industry norinaiy has only a
limited demand history. As a result, Tsado's methodology cannot be typically used.

Wemmerlov (1989) analyzed the effect of data variance on the performance of 14 lot sizing
methods using simulated data. He found that, without forecast errors, W-W was best, followed by Groff's
rule and S-M. With errors, Eisenhut PPB was best, followed by two of Wemmerlov's rules. 1OQ and
W-W were in the top six.

PERFORMANCE CRITERIA

Cost Structure

Our experience with industry and U.S. government agencies shows (kat few compunics or
logistics bases are comfortable with setting values on shortage or order costs. In the government, service
levels are preferred as a criterion. The ratio per unit of setup cost to holding cost is then the key variable.
In this study, these valyes were based on the mcan demand per period as in Berry (1972), Callarman and
Hamrin (1979), and Wemmerlov and Whybark (1984). They were cstablished by sctting the time
between orders (the TBO in number of periods of demand) at 2, 4, 6, 8, and 10. Using the mean demand
per period, the a/h (setup to holding) ratio which would make each corresponding TBO optimal was
determined and incorporated in each model. ‘These values also correspond to our cxperience with
industrial concerns.

Several measures may be applicd to evaluate the performance of lot sizing approaches relative o
service level. These measurcs include the number of stockouts and the shortages as a percentage of
demand for the short period. In addition, a relative cost measure was obtained by comparing standard
inventory cost for the algorithm with the cost determined by the optimal Wagner-Whitin algorithm,

Relative Cost

Previous studies have used the Wagner-Whitin heuristic as the baseline for cost comparisons.
Unfortunately, the W-W procedure is suboptimal in the case of a rolling horizon and probahilistic
demand. Arguments for the use of the Wagner-Whiltin heuristic as the bascline are:

1. Wagner-Whitin is the baseline in the deterministic case.
2. Itis not known before hand which rule will outperform the others.
3. Use of the Wagner-Whitin heuristic provides an easy comparison to previous work.

We feel these reasons do not justify the use of a single heuristic as a basis of comparison. It is
true that we do not know what the optimal inventory cost of a probabilistic lot size problem will be until
the demands have already becn satisfied, i.e., we do not know what our future demands will be.
However, by comparing the cost obtained through the use of a heuristic (when demand is considered
stochaslic) with the optimal cost obtaincd by Wagner-Whitin over the cntire demand "history” (when
considered deterministic), we obtain a true, fixed reference for comparision.

The key to this fixed reference is in the interpretation of the cost comparison. Specifically, the
difference in cost between the optimal and the huenistic may be thought of as the maximum amount of
money we would be willing to pay for perfect knowledge of our future demand (referred to as the
expected value of perfect information or EVPI). (See Raiffa, 1968.)

Number of Stockouts

Wemmerlov and Whybark (1984), Tsado (1985a), and others arbitrarily set service levels in
order to handle the question of stockouts. By service level, we mean there exists enough safety stock to
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assure demands are met a specified percentage of the time. Generally, levels between 90 and 99.999
percent are chosen. As a result, the stockout question is largely ignored.

Since we assume that stockouts have a "variable” cost (ie., the cost of a stockout to one
organizaticn may be quite less than that perceived by another), setting an arbitrary service level may not
be appropriate. Furthcr, by pre-determining a service level, the effects of a lot size algorithm on
inventory (holding and setup) costs and stockout costs may be confounded by the safety stock issue.

In a manner similar to that employed by Bookbinder and H'ng (1986), we chosc to “count” the
number of times a lot size heuristic produced a stockout. Obviously, this number will vary according to
TBO level. Therefore, we chose to compute the stockout "cost” as the number of times a stockout
occurred expressed as a percentage of the number of replenishments made. For example, given a 52-
period demand "history” with a TRO level of 2, 5 stockouts out of 26 replenishments (approximately)
wonld yield a stockout "cost” of 0.1923, i.e., about 19.23% of the replenishments made would experience
a stockout. For a TBO of 6 periods, S stockouts would imply a “cost” of §7.69%.

Percentage Short per Stockout

Another tactor in the stockout question is the amount of shortage when a stockout occurs. The
average shortage per stockout is therefore an important "cost” consideration.  However, an average
shortage of N units does not provide a significant amount of information. There¢ are two ways of
handling this probiem. One is to express the shortage as a percentage of average demand. Another
approach is (o express the shortage as a percentage of the actual demand for the period in which g
shortage occurred. We chose the latter. Justification for our selection follows.

Consider an average demand of 500 units. If we forecast a demand of 550 units where the actual
demand 1s 600 units, then our percentage short is only 8.3% of actual demand. If we had used average
demand, we would have shown a shortage of 10%. Now assume an average demand of 50 units, a
forecasted demand of 100 units ,and an actual demand of 150 units. We show a shortage of 33.3% of
actual demand rather than a mislcading 100% of avcrage demand. In both cases, the forecast was 50
units greater than the average demand, and the actual demand was S0 units greater than the forecasted
demand. Obviously, shortage "cost” expressed as a percentage of actual demand is a more accurate
estimate of the true "cost” associated with a shortage.

PROCEDURE

Assumptions

The assumptions used to develop the single-stage, production fot size problem are similar to
those employed by other researchers and are as follows:

1. Demand is probabilistic and is forecast using a limite«d amount of prior
history.

2. A fixed cost is incurred for each setup.

3. The inventory holding cost is a function of the amount of inventory on hand at
the end of a given period.

4. Production lead time is zero (i.c., we have enough inventory at the end of a

production period to meet that period's demand).

All demands are met at the end of cach period (i.c.,the order for the next

period will cover shortages for the current period.

6. There is no safety stock except that which is inhcrent to a particular Jot size
heuristic.

7. Back orders are allowed.

8. There is no monetary penalty for shortages in the cost calculations (i.e..
shortages are handled as a scparate criterion.

9. Demand for the next period is uo kiown with certainty.

10. An updated forecast is available for any period.

n

4 LOT SIZING TECHNIQUES




General Procedure

Research on lot size procedures has been performed by Silver (1978), Askin (1981), Bookbinder
and H'ng (1986), and Bookbinder and Tan (1988). Our procedure (Figure 1), while developed prior to
our knowledge of the previous works, is similar to that suggested by Bookbinder and Tan as follows:

1.

2.

o

Use a focus forecast from simple exponential smoothing and exponential
smoothing with trend models for demands over the rolling horizon.

Treat the forecast demand as deterministic and employ a specific lot size
heuristc.

If on-hand inventory is positive, the production quantity will be the amount
obtained from the lot size heuristic minus the on-hand inventory.

If on-hand inventory is negative (i.c., a stockout has occurred), the production
quantity will be the amount obtained from the lot size heuristic plus the
amount backordered.

For each period, compare the on-hand inventory to the forecast for the next
period. If the forecast exceeds the inventory position, schedule a setup for
the next period, otherwise continue.

When the next period's demand is realized, demand is met or a shortage
occurs. If short, schedule a sctup for the next period, otherwise look at the
next period's forecast (Step 5).

Develop an extended forccast only when a sctup is scheduled.

Continuc this procedure until all available demand data is exhausted.
Discount the inventory holding cost for aill on-hand inventory used to satisfy
demand beyond the last period in the data set.

I

Iv=lw-Dlt) | Stopi Demand
TRC=TRC + Holdng History is Exhausted

Input Data Set

Compute Optimal Sof ‘ Foceuast coer | G2 FatFoegt ]
and Intia Forecast Roling Horizon .llncr Forecastby Shart |

tat+]

Short = D(t) - Inv
Count = Court + 1

(Select &) Compute
Lotsize {Setup)

Irw = Inv + Lotsize No Tev = Inv - D(t)

TRC=TRC + Setup w TRC = TRC + Holding

Figure 1. Flow Chart of General P'rocedure

Although this study uscd actual demand data rather than a simulation, computer software was
developed to generate the forecasts, compute production policies via the various lot size heuristics (and
the vptimal Wagner-Whitin cost), and to compute the critcrion measures associated with cach technigue.
The forecasting procedure and the lot size procedures were programmcd in MICROSOIT QuickBASIC
and run on an IBM XT compatable microcomputer.
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Forecast P'rocedure

The complete torecast was generated over the entire demand history of cach data st tona
rolling horizon basis) prior to implementation of any lot size procedure Estmutes ol level demand and
trends (when Hoit's exponential smoothing model was used) were stored an memory Although the
forecast for each period was used in the lot size procedure, Ixtended forecasts weere only developed whicii
required by the particular lot size beuristic employed. To provide a compact computer algorithm, the
simple exponential smoothing procedure was incorporated into Holt's procedure by sctting the trend
parameter, g, equal to zero.

"Focusing”, i.e., selecting the "best” forecast model, was carried out by keeping track ot the
mean absolute deviaton and the smoothed error tracking signal (bias) for cach individual or single
forecast. Estimates of the MAD were also exponentially smoothed.  The forecast with the best current
MAD was selected for the focused model if the bias was within acceptabie hnuts, speaifivaiiy between -
0.8and 0.3.

Silver and Peterson (1985) argue that a negatively biased forecast (where forecast eacecds the
demand) is preferable to a positively biased forecast (where demand exceeds the forecast) since bemng a
few items overstocked is preferabie to consistentiy being short {causing to many premature setups)
Wemmerlov and Whybark (1984) specifically avoid the use of biased forecasts by adjusting the average
actual demand per period to cqual the average forecasted demand per peniod. While easily done tor
simulated demand data, this is generally not appropriate for empirical demand forecasted on i rolling
horizon basis. Rescarch by Lee, Adam, and Ebert (1987) shows that "bias is the only measure that
satisfactorily reflects inventory carrying costs...(und) only bias displays any reasoiaable association with
the shortage cost and shortage units..."

Since carrying cost is caused by over forecasting (what Silver and Peterson (1985) referred o as
positive bias) anJ shortage costs are caused by under forecasting (negative bias), the use of an unbiased
forecast (as used by Wemmerlov and Whybark, 1984) might seem reasonable. The research by Tee etal
{1987), however, shows that "the structures of these two component costs may not be symmetnical about
the zero bias level.” Unfortunateiy, they do not provide guidelines as to what the nominal bias levels
may be.

The specific bias levels used in our forecast model were determined in conjuncuon with an
outier disvouating criterion.  Qutliers were discounted by keeping track of the average demand and
standard deviation of the series at cach point in the forecast "cycle”. If an outlier exceeded 4 standard
deviations, the actual demand was reduced to the mean plus 4 standard deviations for forecast purposes.
This provided a stabilizing influence on the forecast which otherwise would have been provided by
human interventon. On the downside, the Zorecast model would lag slighdy behind a true shitt i the
mean of the demand series. This type of lag, however, is a standard "penalty” for exponcutially
smoothed forecast procedures.

1000
800 | \
600 / |
400 .
200 /

0 P .

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Figure 2. Fvamp'e of Level Demand Pattern

As an examplc, the data sct in Figure 2 exhibited a steep downward trend in the forecast moded
due to large upward spikes (outliers) relatively carly in the demand series. The steep downward trend
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was leveled somewhat by discounting the outliers and then varying the bras criteria mnoan effort (o
eliminate a large series of zcro forecasts caused by the apparant trend.

EVALUATION METHODOLOGY

Demand Data Sets

Of 500 original sets of demand data that were obtained from a national product distribution
company, 207 were usable in that no zcros or alphabelic characters appeared as the monthly demand
The demand was based on 52 weekly periods and was clasifed by difficulty of forecasting and by
variability as measured by the coefficient of vanation (CV). Demand patierns were classified as casy to
forecast (level demand, trending, or gradual change to trending) or difficult to forecast (abrupt change, or
continuous up and down trending).

Table 1
Classification of Demand Data Sets

Pattern/CV D~CV<.S S<Cvg«l V>
Linear 12 6 )
Non-linear 8 S 0

The categories for CV were low () < CV < .5), medium (5 < CV < 1.0) and high (CV > 1.0).
These ranges have been observed frequently in several organizations. ‘Table | shows the classification of
demand patterns and the breakout of 36 data sets (Group 1) chosen randomly from the 207 usable data
sets. Figures 2 {previous page), 3 and 4 are examples of Group | data.

.m W
251 ,’/f |

20 !

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Figure 3. Example of Linear Trending Demand Pattern

.

g. \ !!.i \ l
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1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Figure 4. Example of Nonlinear Demand Pattern
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Five other demand data sets from another company were also used. These data sets (Group 2
spanned 78 months but were not classified as to trending or variabilty. Al data sets are available
Cline (1589).

Experimental Design

For the Group 1 data sets, a 5 x 5 x 2 x 3 (lot sizing techmque x TBO x data set type x
variability class) experimental design was used with repeated measures on the first two factors. Lot
sizing technique (Eisenhut, EOQ, Silver-Meal, Tsado, and W-W Heunstic) and TBO (2, 4, 6. &, and 1)
were the primary factors of intercst. Data set type (easy vs. difficult o forccast) and vanbility class (low,
medium, and high) served as stratification variabies. For the Group 2 data sets, only lot sizing technique
and TBO were included in the analysis. Due to the fewer number of Group 2 data sets, stratificution was
not feasibie.

Each demand data set served as input to each of the five lot sizing techniques for cach of the tive
TBO levels. Values for the three porformaine measures (inventory cost relative to the optimal W-W,
stockouts as a percentage of replenishments, and shortage as a percentage of actual demand) were thus
cotlected on 900 runs (36 data sets x S lot sizing techniques x 5 TBO levels).

RESULTS

Group 1 Data

The results collapsed across the 36 Group 1 data scts are sumunarized in Table 2 for the relative
inventory cost, percentage of stockouts, and percentage short.

Table 2
Inventory Costs, Stockouts, and Shortages vs. Lot Sizing Techinique and TBO
Technique/TBO 2 4 6 8 10 Average

ICSO %S | ICSO %S | ICSO %S | ICSO %S | ICSO %S | 1C SO %S
Eisenhut 384116276 | 296127231 | 369141177 | 460152183 | 747164309 | 45114023
EOQ 451 82216 | 292167285 | 236227266 | 223260316 | 181342376 | 277215292
Silver-Meal 416117257 | 257184325 | 245187236 | 279213214 [ 270293316 | 294199270
Tsado 396109282 | 231200293 | 19.7262324 | 184299318 | 163349424 | 254246328
W-W Heur 410 9.1240 | 325144246 | 433115208 | 111357173 [ 32350575 | 1103 83180
Averages 411103254 | 280166276 | 296186242 | 452196241 | 919231300

IC - inventory cost relative o Wagner-Whitin
SO - stockouts as a percentage of replenishments
%S - shortage as a percentage of actual demand

As illustrated by Figures 5, 6 and 7 (next page), the various lot sizing technigucs performed
differently with respect to standard inventory cost (holding and sctup) than they did with respect to
shortage related measures. In terms of inventory costs (Figure 5), the EOQ, S-M and Tsado algorithms
performed significantly better than the Eisenhut and W-W heuristics.  Although a Tukey test with an
alpha level of 0.05 demonstrated statistical significance, the difference was of practical importance only
when the TBO was large (8 or 10 periods).
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Flgure 5. Relative Inventory Cost as a Function of Lot Sizing Technique and TBO

‘ Conversely, Figures 6 and 7 show the Eisenhut and W-W hecurictics resulted in significantly
fewer shortages and a lower percentage of items short per stockout than the other three algorithms. The
variability in the number of stockouts (in terms of percentage of replenishments) across the different
levels of TBO was smallest for the Eisenhut PPB technique with means ranging from 12% o 18% The
W-W heuristic, while slightly less stable than the Eisenhut algorithm, was statistically the best overall
performer for number of shortages (with an alpha level of 0.01). Variability in percent short across the
TBO's was essentially the same for all five algorithms.
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Figure 6. % Stockouts as a Function of 1.0t Sizing Technique and TBO
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Figure 7. % Short as a Function of Lot Sizing Technique and TBO

In all cases, the W-W heuristic performed worst with respect to inventory cost but best with
respect to shortages. At a TBO of 10, the W-W heuristic provided solutions with virtually no stockouts
and less than 10% of actual demand short when a stockout did occur. The price for this performance,
however, was an average inventory cost of more than three times the optimal solution. It appears that
both the W-W heuristic and Eisenhut algorithms maintain a significant amount of inherent safety stock
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whereas the other algorithms tend to "run lean”. Additional inventory increases the inventory holding
costs but reduces the number of stockouts due to bein? a few items short.

Whether the demand pattern was casy or difficult w forecast did not significantly affect cither
the inventory costs of the number of shortages.  However, dilficult demand dativ did resolt o
significantly smuller percentage short per stockout due o "over forecasting” by the hacar forecast inodel.

The level ~f variability in the data sct (as indicated by the cocflicient of variation) was a
significant factor in that all three variability classes differed significany on all criterion mcasures (with
lower costs typically associated with lower variability as would be expected). The difference did not
hold for a TBO of 2 where the inventory costs averaged 41.3, 41.7, and 39.0 for the low, mcdium, and
high variability classes, respectively. At high variability for a TBO of 2, there tended to be stockouts
which lowered holding costs.

Inventory cost performance as a function of TBO tended to validatc the "nulc of thumb”
advocated by Wemmerlov and Whybark (1984) which states that the fength of the rolling horizon should
be approximately three times the average time betwecen orders. A TBO of 4 provided the lowest
inventory cost using a rolling horizon of 12 periods. However, performance as measured by the number
of stockouts and amounts short per stockout did not support this recommendation.  Wemmerlov and
Whybark also advocate a rolling horizon of at least five times the average time between orde. . for the
Wagner-Whitin heuristic since it uses the entire length of the rolling horizon to make its initial
production decision. Recall, in the Wemmerlov study, that service levels were held constant for all
factors.

Group 2 Data

With only five data scts, the simplificd analysis examined only lot sizing technique and TBO
level. The results paralicled those for the Group 1 data. Lot sizing technique and TBO were significant
factors. The same techniques performed better for the same respective criteria, however, with fewer data
sets, the level of significance was smaller. Additionaly, these data sets had long periods of level demand
which also tended to obscure differences in the techniques.

Validation

Since the random sample was not balanced (i.c. non-equal replications in ail cells), additional
samples were drawn so that an equal number of data sets (n = 5) occurred in each cell. Interaction effccts
could then be more appropriately analyzed.

The results not only paralleled the previous study, they were much stronger and the conclusions
they supported were more clearly delineated. The balanced design allowed an interaction analysis that
supported an interpretation for practical application as follows:

1. The level of forecasting difficulty does not affect the choice of algorithin if
focus forecasting is used.

2. The selected criterion does affect the choice of algorithm. Although not
statistically different, the order of performance based on the selected criterion
is given in Table 3.

3. Increasing the TBO magnifics the difference between the algorithms, i.c., at
large TBO levels (8 and 10), the first -ranked algorithm is statistically superior.

Table 3
Top Performing Algorithms By Performance Criterion

Criterlon Best Better Good

Cost: Tsado Eisenhut PPB Silver-Meal
% Short: W-W Heuristic Eisenhut PPB

% Stockouts: W-W Heuristic
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SUMMARY

Wemmerlov (1989) states that "lot sizing research is not dead”. Our results indicate this is true
There is much (o be gained by selecting the right lot sizing technique based on the desired criterion. U
minimizing shortages is the criterion of choice, Eisenhut Pant Period Balance or the Wagner-Whitin
beuristic is clearly best. Otherwise, EOQ, Silver-Meal or Tsado are equally good choices. The big gap
in research is testing lot sizing techniques using empirical demand data when resource constraints are
present. Therefore, further research in this direction is warranted.
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